Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(1*H*-Pyrrol-2-ylmethylidene)(3-{[(1*H*pyrrol-2-ylmethylidene)amino]methyl}benzyl)amine

Dong Wan Kim, Tae Ho Kim,* Jineun Kim and Jae Sang Kim*

Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang, National University, Jinju 660-701, Republic of Korea

 $Correspondence\ e-mail:\ thkim@gnu.ac.kr,\ jaeskim@gnu.ac.kr,\ jaeskim@gnu.ac.kr$

Received 10 November 2010; accepted 12 November 2010

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.004 Å; R factor = 0.060; wR factor = 0.141; data-to-parameter ratio = 14.9.

In the title compound, $C_{18}H_{18}N_4$, the dihedral angles between the pyrrole rings and the phenyl ring are 85.07 (8)° and 77.13 (9)°. Intermolecular N-H···N hydrogen bonds contribute to the stabilization of the crystal packing.

Related literature

For the synthesis of the title compound, see: Chakravorty & Holm (1964); Jasat & Dolphin, (1997). For related structures, see: Nativi *et al.* (2007).

Experimental

Crystal data

 $\begin{array}{l} C_{18}H_{18}N_4 \\ M_r = 290.36 \\ \text{Monoclinic, } P2_1/n \\ a = 5.0010 \ (6) \ \text{\AA} \\ b = 17.271 \ (2) \ \text{\AA} \\ c = 17.764 \ (2) \ \text{\AA} \end{array}$

 $\beta = 96.128 (9)^{\circ}$ $V = 1525.5 (3) \text{ Å}^3$ Z = 4Mo K α radiation $\mu = 0.08 \text{ mm}^{-1}$ T = 173 K 0.15 \times 0.05 \times 0.02 mm

Data collection

```
Bruker APEXII CCD12454 measured reflectionsdiffractometer2990 independent reflectionsAbsorption correction: multi-scan<br/>(SADABS; Sheldrick, 1996)<br/>T_{min} = 0.988, T_{max} = 0.9981550 reflections with I > 2\sigma(I)
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.060$ 200 parameters $wR(F^2) = 0.141$ H-atom parameters constrainedS = 0.98 $\Delta \rho_{max} = 0.20 \text{ e Å}^{-3}$ 2990 reflections $\Delta \rho_{min} = -0.18 \text{ e Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D = \Pi \cdots A$ D^{-1}	−H H·	$\cdots A \qquad D \cdots A$	$D - H \cdots A$
$\overline{N1 - H1 \cdots N3^{i}} \qquad 0.8$	38 2.1	7 2.993	(3) 156

Symmetry codes: (i) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL* and *DIAMOND* (Brandenburg, 1998); software used to prepare material for publication: *SHELXTL*.

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2010–0016386).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2230).

References

- Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chakravorty, A. & Holm, R. H. (1964). Inorg. Chem. 3, 1521-1524.
- Jasat, A. & Dolphin, D. (1997). Chem. Rev. 97, 2267-2340.
- Nativi, C., Cacciarini, M., Francesconi, O., Vacca, A., Moneti, G., Ienco, A. & Roelens, S. (2007). J. Am. Chem. Soc. 129, 4377–4385.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2010). E66, o3211 [doi:10.1107/S1600536810046799]

(1*H*-Pyrrol-2-ylmethylidene)(3-{[(1*H*-pyrrol-2-ylmethylidene)amino]methyl}benzyl)amine

D. W. Kim, T. H. Kim, J. Kim and J. S. Kim

Comment

The design and synthesis of supramolcular ligands are based on the ability to organize the binding site and size complementarities in a proper way. Especially, metal ions assisted self-assembly are one of most powerful approaches to supramolecular architectures. For examples, the N4 type of tetradentate ligands, pyrrole-2-yl Schiff base and pyrrole-2-ylmethylene amines have been known for a long time (Chakravorty & Holm, 1964; Jasat & Dolphin, 1997).

In the asymmetric unit (Fig. 1), the dihedral angle between the pyrrole ring plane system and phenyl ring plane are 85.07 (8)° and 77.13 (9)°. All bond lengths and bond angles of pyrrole-2-ylmethylene group are are comparable to those observed in similar structures (Nativi *et al.*, 2007).

In the crystal structure, intermolecular N—H···N hydrogen bonds are observed. These interactinos contribute to stabilization of the packing (Fig. 2).

Experimental

Pyrrole-2-carbaldehyde (1.9 g, 20 mmol) and 1,3-phenylenedimethanamine (1.36 g, 10 mmol) were dissolved in ethanol (20 ml). The mixture strirred for a while, and then a few drops of acetic acid was added. After about 30 min, a light yellow precipitate was observed. After about 20 min, the precipitate obtained from filtration was washed with ethanol, dried in vacuum. Slow evaporation of a solution in CH₂Cl₂ gave single crystals suitable for X-ray analysis.

FT—IR (KBr disk) 3166, 3110, 2830, 1641 cm^{-1. 1}H NMR (300 MHz, DMSO-d₆) 4.7 (s, 2H), 6.1 (d, 2H, J=4.2 Hz), 6.5 (t, 2H, J=2.8 Hz), 6.9 (d, 2H, J=4.2 Hz), 7.3 (m, 4H), 8.2 (s, 2H), 11.4 (broad s, 2H). ¹³C NMR (75 MHz, DMSO-d₆) 39.1, 64.3, 109.3, 114.2, 122.6, 126.9, 128.1, 130.4, 140.6, 152.9. EI—MS (m/z): 290 (*M*⁺).

Refinement

All H-atoms were positioned geometrically and refined using a riding model with d(N-H) = 0.88 Å, $U_{iso}(H) = 1.2U_{eq}(C)$ for pyrrole N, d(C-H) = 0.95 Å, $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic C and d(C-H) = 0.99 Å, $U_{iso}(H) = 1.2U_{eq}(C)$ for CH₂ groups.

Figures

Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.

Fig. 2. Crystal packing of the title compound with intermolecular N—H···N hydrogen bonds shown as dashed lines. H atoms not involved in intermolecular interactions have been omitted for clarity. [Symmetry codes: (i) -x + 1/2, y + 1/2, -z + 1/2; (ii) -x + 1/2, y - 1/2, -z + 1/2; (iii) -x + 1, -y + 1, -z + 1; (iv) x + 1/2, -y + 1/2, z + 1/2; (v) x + 1/2, -y - 1.5, z + 1/2.]

(1H-Pyrrol-2-ylmethylidene)(3-{[(1H-pyrrol-2-ylmethylidene)amino]methyl}benzyl)amine

Crystal data

$C_{18}H_{18}N_4$	F(000) = 616
$M_r = 290.36$	$D_{\rm x} = 1.264 {\rm ~Mg~m^{-3}}$
Monoclinic, $P2_1/n$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 867 reflections
a = 5.0010 (6) Å	$\theta = 2.3 - 18.8^{\circ}$
b = 17.271 (2) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 17.764 (2) Å	<i>T</i> = 173 K
$\beta = 96.128 \ (9)^{\circ}$	Plate, yellow
V = 1525.5 (3) Å ³	$0.15\times0.05\times0.02~mm$
Z = 4	

Data collection

Bruker APEXII CCD diffractometer	2990 independent reflections
Radiation source: fine-focus sealed tube	1550 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.087$
ϕ and ω scans	$\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -6 \rightarrow 6$
$T_{\min} = 0.988, T_{\max} = 0.998$	$k = -21 \rightarrow 19$
12454 measured reflections	$l = -21 \rightarrow 21$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.060$ $wR(F^2) = 0.141$ S = 0.982990 reflections 200 parameters 0 restraints Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0531P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.20 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.17 \text{ e } \text{Å}^{-3}$ Extinction correction: *SHELXL*, $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Primary atom site location: structure-invariant direct Extinction coefficient: 0.0061 (15)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	0.1887 (4)	0.93308 (13)	0.30396 (12)	0.0471 (6)
H1	0.2430	0.9034	0.2683	0.057*
N2	-0.1228 (4)	0.78669 (13)	0.30188 (12)	0.0479 (6)
N3	0.0866 (4)	0.37738 (12)	0.33592 (12)	0.0443 (6)
N4	0.4888 (4)	0.24887 (12)	0.35156 (12)	0.0466 (6)
H4	0.4867	0.2670	0.3052	0.056*
C1	0.2853 (6)	1.00448 (17)	0.32310 (17)	0.0555 (8)
H1A	0.4232	1.0307	0.3004	0.067*
C2	0.1523 (6)	1.03243 (18)	0.38019 (17)	0.0597 (8)
H2	0.1807	1.0812	0.4045	0.072*
C3	-0.0330 (6)	0.97645 (17)	0.39655 (15)	0.0539 (8)
Н3	-0.1554	0.9803	0.4338	0.065*
C4	-0.0070 (5)	0.91461 (16)	0.34911 (14)	0.0454 (7)
C5	-0.1556 (6)	0.84397 (16)	0.34583 (15)	0.0488 (7)
Н5	-0.2909	0.8389	0.3792	0.059*
C6	-0.2874 (5)	0.71839 (15)	0.31250 (16)	0.0483 (7)
H6A	-0.3806	0.7024	0.2630	0.058*
H6B	-0.4261	0.7318	0.3461	0.058*
C7	-0.1203 (5)	0.65149 (15)	0.34658 (14)	0.0399 (7)
C8	-0.1874 (5)	0.57583 (16)	0.32711 (14)	0.0436 (7)
H8	-0.3368	0.5664	0.2906	0.052*
С9	-0.0432 (5)	0.51348 (15)	0.35929 (14)	0.0406 (7)
C10	0.1738 (6)	0.52757 (16)	0.41134 (14)	0.0461 (7)
H10	0.2763	0.4856	0.4336	0.055*
C11	0.2443 (5)	0.60305 (16)	0.43154 (14)	0.0476 (7)
H11	0.3950	0.6126	0.4676	0.057*
C12	0.0964 (6)	0.66413 (16)	0.39942 (15)	0.0450 (7)
H12	0.1448	0.7156	0.4140	0.054*
C13	-0.1352 (5)	0.43160 (15)	0.33830 (17)	0.0519 (8)
H13A	-0.2540	0.4130	0.3756	0.062*
H13B	-0.2420	0.4326	0.2881	0.062*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

C14	0.1251 (6)	0.33165 (16)	0.39264 (15)	0.0469 (7)
H14	0.0085	0.3373	0.4311	0.056*
C15	0.3263 (5)	0.27306 (15)	0.40368 (14)	0.0425 (7)
C16	0.3911 (6)	0.23031 (17)	0.46802 (16)	0.0556 (8)
H16	0.3085	0.2341	0.5136	0.067*
C17	0.5993 (6)	0.18029 (17)	0.45480 (17)	0.0592 (8)
H17	0.6864	0.1444	0.4898	0.071*
C18	0.6545 (6)	0.19249 (16)	0.38240 (18)	0.0552 (8)
H18	0.7867	0.1660	0.3576	0.066*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0528 (14)	0.0354 (14)	0.0530 (14)	0.0013 (12)	0.0052 (12)	-0.0062 (11)
N2	0.0588 (15)	0.0349 (14)	0.0505 (14)	-0.0004 (12)	0.0073 (12)	0.0055 (11)
N3	0.0514 (14)	0.0296 (13)	0.0513 (14)	-0.0039 (11)	0.0031 (11)	-0.0047 (11)
N4	0.0575 (14)	0.0362 (14)	0.0463 (13)	-0.0017 (12)	0.0065 (11)	0.0033 (10)
C1	0.0540 (18)	0.0411 (19)	0.070 (2)	-0.0056 (15)	-0.0008 (16)	-0.0095 (15)
C2	0.062 (2)	0.0461 (19)	0.068 (2)	0.0031 (17)	-0.0030 (17)	-0.0154 (16)
C3	0.0631 (19)	0.054 (2)	0.0443 (17)	0.0067 (17)	0.0046 (14)	-0.0067 (14)
C4	0.0553 (18)	0.0410 (18)	0.0398 (15)	0.0019 (15)	0.0043 (14)	0.0011 (12)
C5	0.0599 (19)	0.0463 (19)	0.0410 (16)	0.0061 (15)	0.0088 (14)	0.0070 (13)
C6	0.0526 (17)	0.0369 (17)	0.0555 (18)	-0.0025 (14)	0.0066 (14)	0.0048 (13)
C7	0.0473 (17)	0.0364 (17)	0.0369 (15)	-0.0013 (13)	0.0083 (14)	-0.0002 (12)
C8	0.0428 (16)	0.0437 (19)	0.0439 (16)	-0.0025 (14)	0.0022 (13)	-0.0035 (13)
C9	0.0437 (16)	0.0348 (17)	0.0429 (15)	-0.0033 (14)	0.0031 (14)	-0.0037 (12)
C10	0.0557 (18)	0.0346 (17)	0.0477 (17)	-0.0007 (14)	0.0042 (15)	-0.0008 (12)
C11	0.0494 (17)	0.0438 (19)	0.0482 (17)	-0.0049 (15)	-0.0012 (14)	-0.0069 (13)
C12	0.0542 (19)	0.0311 (17)	0.0510 (17)	-0.0025 (14)	0.0125 (15)	-0.0026 (13)
C13	0.0505 (17)	0.0362 (18)	0.068 (2)	-0.0004 (15)	0.0022 (15)	-0.0109 (14)
C14	0.0583 (19)	0.0380 (17)	0.0457 (17)	-0.0077 (15)	0.0109 (14)	-0.0087 (13)
C15	0.0538 (17)	0.0310 (16)	0.0423 (16)	-0.0074 (14)	0.0032 (14)	-0.0031 (12)
C16	0.076 (2)	0.0437 (19)	0.0464 (18)	-0.0058 (17)	0.0027 (15)	-0.0001 (14)
C17	0.074 (2)	0.0400 (19)	0.060 (2)	-0.0024 (17)	-0.0114 (17)	0.0083 (15)
C18	0.0548 (19)	0.0394 (19)	0.070 (2)	0.0037 (15)	0.0022 (16)	0.0057 (15)

Geometric parameters (Å, °)

N1—C1	1.354 (3)	C7—C12	1.373 (4)
N1-C4	1.368 (3)	C7—C8	1.384 (3)
N1—H1	0.8800	C8—C9	1.385 (3)
N2—C5	1.282 (3)	C8—H8	0.9500
N2—C6	1.462 (3)	C9—C10	1.370 (4)
N3—C14	1.279 (3)	C9—C13	1.521 (3)
N3—C13	1.456 (3)	C10—C11	1.388 (4)
N4—C18	1.356 (3)	C10—H10	0.9500
N4—C15	1.361 (3)	C11—C12	1.377 (3)
N4—H4	0.8800	C11—H11	0.9500
C1—C2	1.359 (4)	C12—H12	0.9500

C1—H1A	0.9500	C13—H13A	0.9900
C2—C3	1.391 (4)	C13—H13B	0.9900
С2—Н2	0.9500	C14—C15	1.426 (4)
C3—C4	1.375 (4)	C14—H14	0.9500
С3—Н3	0.9500	C15—C16	1.370 (4)
C4—C5	1.426 (4)	C16—C17	1.392 (4)
С5—Н5	0.9500	C16—H16	0.9500
C6—C7	1.514 (4)	C17—C18	1.360 (4)
С6—Н6А	0.9900	С17—Н17	0.9500
С6—Н6В	0.9900	C18—H18	0.9500
C1—N1—C4	108.9 (2)	С9—С8—Н8	119.0
C1—N1—H1	125.6	C10—C9—C8	118.7 (2)
C4—N1—H1	125.6	C10-C9-C13	121.8 (2)
C5—N2—C6	115.7 (2)	C8—C9—C13	119.4 (2)
C14—N3—C13	115.2 (2)	C9—C10—C11	1202(3)
C18—N4—C15	109.2(2)	C9—C10—H10	1199
C18—N4—H4	125.4	$C_{11} - C_{10} - H_{10}$	119.9
C15—N4—H4	125.4	C12-C11-C10	120.1 (3)
N1 - C1 - C2	108 7 (3)	C12—C11—H11	119.9
N1 - C1 - H1A	125.6	C10-C11-H11	119.9
C^2 — C^1 — H^1A	125.6	C7-C12-C11	120.8 (3)
C1 - C2 - C3	123.0 107 4 (3)	C7 - C12 - H12	119.6
C1 - C2 - H2	126.3	$C_{11} - C_{12} - H_{12}$	119.6
C_{3} C_{2} H_{2}	126.3	N3-C13-C9	113.2 (2)
C_{4} C_{3} C_{2} C_{12}	107.6 (3)	N3_C13_H13A	108.9
C4 - C3 - H3	126.2	C9_C13_H13A	108.9
C_{2} C_{3} H_{3}	126.2	N3_C13_H13B	108.9
N1-C4-C3	120.2 107 4 (2)	C9_C13_H13B	108.9
N1-C4-C5	107.4 (2)	H_{13A} $-C_{13}$ $-H_{13B}$	107.8
$C_{3}^{-} C_{4}^{-} C_{5}^{-}$	125.5(2) 127.3(3)	$N_{3} - C_{14} - C_{15}$	107.0
$N_{2} = C_{5} = C_{4}$	127.5(3)	N_{3} C_{14} H_{14}	116.0
N2_C5_H5	117.1	$C_{15} - C_{14} - H_{14}$	116.9
C4-C5-H5	117.1	N4_C15_C16	107.3 (3)
N2_C6_C7	117.1 111.9(2)	$N_{-C15-C14}$	107.5(3)
N2_C6_H6A	100.2	$C_{16} = C_{15} = C_{14}$	120.0(2) 126.7(3)
C7_C6_H6A	109.2	$C_{10} = C_{10} = C_{14}$	120.7(3) 107.9(3)
N2_C6_H6B	109.2	$C_{15} = C_{16} = H_{16}$	107.9 (3)
C7_C6_H6B	109.2	C17_C16_H16	126.0
	107.2	$C_{1,2}^{1,2} = C_{1,2}^{1,2} = C_{1,2}^{1,2$	120.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.3	$C_{18} = C_{17} = C_{10}$	107.1 (5)
$C_{12} = C_{7} = C_{8}$	110.5(2) 120.9(2)	C16_C17_H17	120.4
$C_{12} - C_{12} - C_{0}$	120.9(2) 120.8(3)	N4 C18 C17	120.4
$C_{3} - C_{7} - C_{0}$	120.8(3) 122.0(3)	N4 C18 H18	106.4 (5)
$C_{1} = C_{0} = C_{1}$	112.0 (3)	114 - 113 - 1118	125.8
$C_{1} = C_{0} = 110$	0.2 (2)		123.0
U4—N1—U1—U2	-0.2(3)	C13 - C9 - C10 - C11	-1//.1(2)
NI - CI - C2 - C3	-0.2(3)	C9—C10—C11—C12	0.0 (4)
C1 - C2 - C3 - C4	0.6 (3)	C8—C7—C12—C11	0.6 (3)
C1—N1—C4—C3	0.6 (3)	С6—С/—С12—С11	178.6 (2)

supplementary materials

C1—N1—C4—C5	-179.9 (3)	C10-C11-C12-C7	-0.7 (4)
C2-C3-C4-N1	-0.7 (3)	C14—N3—C13—C9	103.7 (3)
C2—C3—C4—C5	179.8 (3)	C10-C9-C13-N3	-36.8 (3)
C6—N2—C5—C4	176.1 (3)	C8—C9—C13—N3	145.5 (2)
N1-C4-C5-N2	2.1 (4)	C13—N3—C14—C15	179.4 (2)
C3—C4—C5—N2	-178.5 (3)	C18—N4—C15—C16	-0.5 (3)
C5—N2—C6—C7	-109.9 (3)	C18—N4—C15—C14	179.9 (3)
N2-C6-C7-C12	35.8 (3)	N3-C14-C15-N4	-9.2 (4)
N2—C6—C7—C8	-146.3 (2)	N3-C14-C15-C16	171.3 (3)
C12—C7—C8—C9	0.1 (3)	N4-C15-C16-C17	0.9 (3)
C6—C7—C8—C9	-177.9 (2)	C14—C15—C16—C17	-179.5 (3)
C7—C8—C9—C10	-0.7 (4)	C15-C16-C17-C18	-1.0 (3)
C7—C8—C9—C13	177.1 (2)	C15—N4—C18—C17	-0.1 (3)
C8—C9—C10—C11	0.6 (4)	C16—C17—C18—N4	0.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A	
N1—H1···N3 ⁱ	0.88	2.17	2.993 (3)	156	
N4—H4…N2 ⁱⁱ	0.88	2.12	2.949 (3)	158	
Symmetry codes: (i) $-x+1/2$, $y+1/2$, $-z+1/2$; (ii) $-x+1/2$, $y-1/2$, $-z+1/2$.					

